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 Intelligently apply computational methods to the design of 
materials 
 

 Effectively design materials to yield desirable functionality 
 

 Interpret experimental data based on theoretical modeling 
and simulations 

 
 Design experiments to yield deeper insights for materials 

discovery 

Core Issue: How to implement a meaningful simulation 
for the design of materials? 



Materials properties charts: Scalings in Mechanical 
Strength vs. Density 

Materials look 
very different 

Materials properties 
vary by many orders 

of magnitude 

Composition/chemical 
bonding 

Microstructure 

Materials Selection in Mechanical Design (3rd edition) 
by MF Ashby, Butterworth Heinemann, 2005 

A variety of 
mechanisms govern 
materials behavior 



Objectives of multiscale modeling of materials 

Length 

Time 

nanometer mm 

picosec. 

nanosec. 

microsec 

femtosec. 

micron meters 

second 

Electrons Atoms Mesoparticles Elements 

• Understand the molecular level origins of materials behavior 
• Predict the behavior of materials from first principles 

Molecular dynamics 

Mesoscale 

Quantum 
Mechanics 

Macroscale 

Ultimate: design new materials with improved performance 



                       Quantum Mechanical modeling 
• Solve Schrodinger eqn. (SE)                      for electrons.  
• General for different materials, accurate (chemical reaction, bond   
  breaking, etc)  
• Very expensive; N<1000 

• Solve Newton eqn. 
• Vtot (r) unknown; constructed by fitting to data in analytical form 
• Faster than QM cal.; N ~ 105  to 107  

• Solve continuous displacement filed u(x) for given Hooke’s Law                          
                      by minimizing the elastic energy  
•  No microscopic physics contained in the model; no discrete lattice 
• Very cheap; microns to meters for real engineering structures!  

Continuum Mechanical Modeling with Finite-Element Method 



How computational methods are applied to modern design 
of materials for desired functionality 
 
One overview on methodology and five design categories to 

be covered:  
 

0.  Principles of computational materials design 
1.  Computational design of materials for desired mechanical 
       properties 
2.  Computational design of semiconductor systems 
3.  Computational design of metal systems 
4.  Computational design of catalytic materials 
5.  Computational design of energy-related Materials 

 



How computational methods are applied to the design of 
materials to yield the desired functionality? 
 
Methods to be Covered:  
 first-principles approaches 
 molecular dynamics (MD) simulations 
 kinetic Monte Carlo (kMC) simulations 
 continuum elasticity theory 
 
Extensive Examples: 
 problems in energetic and kinetic parameters of complex 

structures 
 materials for energy conversion, storage, and 

environmental protection 
 those related to mechanical strength of materials 



 Kohn-Sham (KS) density functional theory (DFT) 

 Car-Parrinelo ab initio molecular dynamics 

 Nudged elastic band (NEB) method for atomistic rate 

processes 

 Kinetic Monte Carlo simulations 

 Multi-scale materials modeling: sequential approaches 

 Multi-scale materials modeling: concurrent approaches 

 



 Empirical 
 Model potentials for inter-atomic interactions 
 Low accuracy and relatively poor predictability 

 Semi-empirical 
 Input parameters in the model potentials determined quantum 

mechanically 
 Better accuracy and reasonable predictability  

 Quantum mechanical (first-principles) 
 No models (at least on a formal level) 
 Highest accuracy and predictability 

Interactomic Potentials 

Empirical Semi-Empirical  Ab Initio/DFT 

Neglect Electrons Neglect Core Electrons 
Approximate/parameterize HF Integrals 

Full Accounting of Electrons 



Philosophy:  
Using quantum mechanical principles, devise kinetic 
pathways to form novel materials that possess 
intriguing properties of technological significance. 

 
“Uncovering nature’s hidden rules of making”  

Materials Discovery by Quantum Design 



Quantum Mechanics           Technology Challenges 
for the 21st Century  

• Challenges for science 
– Create new materials and systems by design 
– Scientific progress built upon discoveries of new materials – 

Fullerenes, nanotubes, and graphene (single layer 2D crystals, 
10/2004 in Science Magazine). 

– Build upon discoveries of self-assembled systems  
– Make progress in understanding biological systems starting 

from the fundamental equations of quantum mechanics 
• Outstanding issues for computation 

– Bridging the time and length scales 
– Length – from atoms to nano to macroscopic size 
– Time – picoseconds to milliseconds 

1900 1920 1940 1960 1980 2000 2020 



• P. Hohenberg and W. Kohn, "Inhomogeneous electron 
gas," Phys. Rev., 136, B 864 (1964). 

• W. Kohn and L. J. Sham, "Self-consistent equations 
including exchange and correlation effects," Phys. Rev. 
140, A 1133 (1965). 



 L. de Broglie 
Nature 112, 540 (1923). 

• E. Schrodinger – 1925 
• Pauli exclusion Principle - 1925 
• Fermi statistics - 1926 
• Thomas-Fermi approximation – 1927 
• First density functional – Dirac – 1928 
• Dirac equation – relativistic quantum mechanics - 1928 

1900 1920 1940 1960 1980 2000 2020 

An 85-year long way 



• Bloch theorem – 1928 
• First understanding of semiconductors – 1930’s 
    Wilson - Implications of band theory - Insulators/metals –1931 
    Wigner- Seitz – Quantitative calculation  for Na – 1935 
    Slater - Bands  of Na - 1934   (proposal of  APW in 1937) 
    Bardeen - Fermi surface of a metal - 1935 

• Invention of the Transistor – 1940’s 
– Bardeen – student of Wigner 
– Shockley – student of Slater 

1900 1920 1940 1960 1980 2000 2020 

Quantum Mechanics           Technology 
The Greatest Revolution of the 20th Century  

APW: Augmented Plane Waves 



• Hylleras – Numerically exact solution for H2 – 1929 
– Numerical methods used today in modern efficient methods 

• Slater – Augmented Plane Waves (APW)  - 1937 
– Not used in practice until 1950’s, 1960’s – electronic computers 

• Herring – Orthogonalized Plane Waves (OPW) – 1940 
– First realistic bands of a semiconductor – Ge – Herrman, Callaway (1953)  

• Koringa, Kohn, Rostocker  (KKR) Multiple Scattering – 1950’s 
– The “most elegant” method - Ziman 

• Boys – Gaussian basis functions – 1950’s 
– Widely used, especially in chemistry 

• Phillips, Kleinman, Antoncik,– Pseudopotentials – 1950’s 
– Hellman, Fermi (1930’s) – Hamann, Vanderbilt, … – 1980’s 

• Andersen – Linearized Muffin Tin Orbitals (LMTO) – 1975 
– The full potential “L” methods – LAPW, ….  

1900 1920 1940 1960 1980 2000 2020 

The Basic Methods of Electronic Structure 



1900 1920 1940 1960 1980 2000 2020 

• Hohenberg-Kohn;  Kohn-Sham - 1965 
• Car-Parrinello Method – 1985 

• Evolution of computer power  

• Improved approximations for the density functionals 
– Generalized Gradient Approximations (GGA), . . . 

• Nobel Prize for Chemistry, 1998, Walter Kohn 

• Widely-used codes –The most obvious distinction is between these codes is to 
target molecular systems or those that use periodic boundary conditions (PBCs) to 
treat the physics of extended systems. 

– ABINIT, VASP, CASTEP, ESPRESSO, CPMD, FHI98md, 
SIESTA (Order-N), CRYSTAL, FPLO, WEIN2k, . . . 



• 11 papers published in APS journals since 1893 with > 1000 citations  
(citations in APS journals,  ~5 times as many references in all science journals)  

From Physics Today, June, 2005 

Most Cited Papers in APS Journals  (till 2003) 



Most Cited Papers in APS Journals till 01/24/2012 





 Born-Oppenheimer Approximation 
 Allows the equation of motion 

for electrons and nuclei to be 
treated separately 

 Quantum mechanical description of 
the electronic states 
 Quantum chemistry (Hartree, 

Hartree-Fock, CI) 
 Quantum Monte-Carlo 
 Perturbation theory 
 Density functional theory 

Electron: Nucleus: 

Many-electron problem 

electron-electron interaction 
electron-nucleus interaction 



                    electrons in an external potential Interacting 

The basis of Density Functional Theory (DFT) 



n0(r) → Vext(r) + c   
         →  H → Ψ 
         → All properties based on the wavefunction 
 and total energy 
 

The Hohenberg-Kohn Theorems 



Proof by Variational Principle 

𝐸(1) < 𝐸(2) + �𝑑𝑑3 𝑉 1 𝑑 − 𝑉 2 𝑑 𝑛(𝑑) 

𝐸(1) > 𝐸(2) + �𝑑𝑑3 𝑉 1 𝑑 − 𝑉 2 𝑑 𝑛(𝑑) 



Minimizing E[n] for a given Vext(r) → n0(r) and E 

In principle, one can find all other properties, which are functionals 
of n0(r). 

The Hohenberg-Kohn Theorems 

A functional 𝐸[𝑛 𝑑 ] maps a function 𝑛(𝑑) to a property 𝐸: 𝑛(𝑑) → 𝐸 



• Hohenberg-Kohn (1964) 
 

• All properties of the many-body system are determined by 
the ground state density n0(r) 
 

• Each property is a functional of the ground state density     
n0(r) which is written as  f [n0] 

The basis of Density Functional Theory (DFT) 



• Kohn-Sham (1965) – Replace original many-body problem 
with an independent electron problem, which can be solved!  
 

 

• Only the ground state density and energy are required to be the 
same as in the original many-body system 

The Kohn-Sham Ansatz 



The Hohenberg-Kohn Theorems - Continued 

Instead of solving the complicated real system of interacting electrons 
in an external potential 𝑣(𝑑), a much simpler equivalent fictitious system of 
non-interacting KS particles in an effective potential 𝑣𝑒𝑒𝑒(𝑑) is solved. 

The functional is part of 
the translation of the SE 
external potential into the 
KS effective potential. 



Depleted region (correlation hole) due to the 
electrostatic interaction between electrons.       Ε C < 0 

Depleted region 
(exchange hole) 
due to Pauli 
exclusion between 
electrons with 
parallel spin. 
       Ε X < 0 



    How to find a functional Exc[n] ? It requires 
information on the many-body system of interacting electrons 
 

Functional Exc[n]  in  Kohn-Sham Eqs. 

 Local Density Approximation (LDA) 
 Uses only the electron density 𝑛(𝑑) at spatial point r to 

determine Exc at that point. Assume the functional is the 
same as that of the homogeneous electron gas; 

 Exc has been calculated as a function of density 
using quantum Monte Carlo methods (Ceperley & Alder)---
PZ, PW, and VWN 

 Gradient approximations (GGA) ---PBE and PW91 
 Adds the gradient of the density |∇n(r)| as an independent 

variable. 

Climb up the Jacob’s ladder 



 Meta-GGA 
 Use Laplacians of the density and/or kinetic energy densities 

as additional degrees of freedom. 
 Hyper-GGA 
 Adds an exact exchange (EXX) energy per particle 

calculated from the SE many-body wavefunctions with the 
Hartree–Fock (HF) exchange formula. 

Functional Exc[n]  in  Kohn-Sham Eqs. 

Generalized random phase approximation 
  Use EXX and exact partial correlation 



There are no guarantees when selecting functionals. Following 
are some useful guidelines: 
 It is useful to perform a calculation with at least two different types of 

functional in order to get a rough estimate of the accuracy. 

 Currently available functionals are sometime inadequate for computation of 
surface properties and for systems where van der Waals interactions are 
important. It is also well know the inability of LDA and GGA functionals to 
reproduce the experimental valence–conduction band gap in semiconductors 
and insulators. 

 Spin polarized calculations are crucial in getting reasonable results for defects 
in insulators. But watch out present functionals tend to delocalize spin 
densities too much. 

 Always keep in mind that DFT calculations with presently available 
functionals do not always give the correct answer (see CO on Pt(111)). 

 



• Assuming a form for Exc[n]  
• Minimizing energy (with constraints)  → Kohn-Sham Eqs.   

 
 

 

Constraint – required 
Exclusion principle for 
independent particles 

Eigenvalues are  
approximation 
to the energies to  
add or subtract  
electrons  
–electron bands 
 

The Kohn-Sham Equations (KSE) 



 The only quantities that are supposed to be correct in the 
Kohn-Sham approach are the density, energy, forces, …. 
 

 These are integrated quantities 
 Density  n (r) = Σi |Ψi(r)|2 

 Energy  Etot = Σi εi  + F[n]  
 Force  FI = - dEtot / dRI       where RI = position of nucleus I 

 
 What about the individual Ψi(r ) and εi ? 
 In a non-interacting system, εi are the energies to add an non-

interacting electron.  
 In the real interacting many-electron system, energies to add 

and subtract electrons are well-defined only at the Fermi 
energy.  
 

What about eigenvalues of KSE? 



• Structure, types of atoms 
 

• Guess for input 
 

• Solve KSE 
 

• New Density and Potential 
 
• Self-consistent? 
• Output: 

– Total energy, force, 
stress, ... 

– Eigenvalues  

Solving Kohn-Sham Equations 



What is the computational cost? Can the KSE be 
applied to large complex systems? 
  
• Limiting factor – Solving the KSE. 
• Solution by diagonalization scales as (Nelectron)3  
• Improved methods ~N2 

• Order-N – “Linear Scaling” 
Allows calculations for large systems – integration 
with classical methods for multiscale analysis 
 

Solving Kohn-Sham Equations 



• Core states – strongly bound to nuclei – atomic-like 
• Valence states – change in the material – determine 

the bonding, electronic and optical properties, 
magnetism, ….. 

• Basic problem -  many electrons in the presence of 
the nuclei 

Calculations on Materials: Molecules, Clusters, 
Solids, ….  



 Localized orbitals 
 The intuitive appeal of atomic-like states 
 Simplest interpretation in tight-binding form 
 Gaussian basis widely used in chemistry 
 Numerical orbitals used in SIESTA 

• Augmented methods 
– “Best of both worlds” – also most demanding 
– Requires matching inside and outside functions 
– Most general form – (L)APW 

• Plane waves 
– The simplicity of Fourier Expansions 
– The speed of Fast Fourier Transforms 
– Requires smooth pseudopotentials 

All methods agree 
when done carefully! 

The Three Basic Methods for Modern Electronic 
Structure Calculations  



• Kohn-Sham 
 Equations  
in a crystal 

• The most general approach 

• Kohn-Sham 
 Equations  
in a crystal 

• The problem is the atoms!  High Fourier components! 

Plane Waves 



• Augmentation: represent the wave function inside 
each sphere in spherical harmonics 
– “Best of both worlds”  
– But requires matching inside and outside functions 
– Most general form – can approach arbitrarily precision 

• (L)APW method 

Plane Waves 



•   Generate Pseudopotential in atom (spherical) –        use in solid 
• Pseudopotential can be constructed to be weak 

– Can be chosen to be smooth 
– Solve Kohn-Sham equations in solid directly in Fourier space 

• Pseudopotential Method – replace each potential 

Pseudopotential atom 

solid 

1 

2 

1 2 

Plane Waves 



• The replacement of the full all-electron (AE) potential with a PP is a 
compromise between chemical transferability (faithful reproduction of AE 
behavior) and improved computational efficiency (slowest possible spatial 
variability). Thus, an appropriate guideline to generate a PP is not how well it 
matches experiment, but how well it reproduces the results of identical AE 
calculations. 

• The effectiveness of a given PP needs to be validated in every new chemical 
environment (e.g., in a metal or an oxide). 

• Non-local core correction is needed to get correct spin-polarized states of first 
row atoms like oxygen and nitrogen. 

• Mixing functionals in a calculation is a dangerous practice. An atomic PP 
developed within one DFT flavor should not be used in DFT calculations 
performed in another flavor of DFT. 

Pseudopotentials (PP) 



• Bloch’s theorem transforms a problem with an infinite number of atoms and 
electronic states into a finite number of atoms and states in a translationally 
invariant unit cell but with an infinite number of wave-vectors in the Brillouin 
zone (BZ). 

• Thus to calculate a property P, a special-point scheme is employed that uses 
the fewest possible k points to give the most accurate approximation to the 
integration over the BZ. The k point sampling can have a profound impact on 
computed properties. 

• For metals, the convergence behavior of computed properties must be checked, 
versus the k sample and occupation broadening method. 

Brillouin Zone Sampling 



• The real space formulae for evaluating pressure and stresses contain derivatives 
with respect to coordinates 𝛻𝑟. Each of these derivatives introduces reciprocal 
lattice vectors G, which is directly dependent on the energy cutoff. Thus, 
pressure and stress are more sensitive to the plane wave cutoff than the energy. 

• The error in the pressure is linear in the kinetic energy error (i.e., the kinetic 
energy in the atomic wavefunction above the cutoff ). The slope of this linear 
dependence does depend on the atomic configuration. So one should always 
test some relevant configurations for convergence. 

• An advantage of LCAO methods is a much smaller basis set than the plane 
waves basis. To simulate atoms far removed from equilibrium with LCAO may 
require extra variational freedom in the basis set. For unusual chemical or 
strained atomic configurations, it is advisable to verify whether basis 
augmentation is needed. 

• Note that standard LCAO basis sets are not designed for weak interactions,. 
Special attention must be paid when simulate material systems with interplanar 
spacings or in computing work functions at surfaces. 

Basis Set Sufficiency 



• For a DFT calculation to have predictive value, the study must 
be performed systematically. 

• A good practice of theoretical investigation should include 
structural relaxation. A plausible strategy for finding the lowest 
energy geometry is to explore unrelaxed structures first and to 
relax the structure(s) with low(est) energy. 

Structural Relaxation 



• Properties of crystals – many calculations are now “routine” 
– Definitive tests of the theory – comparisons with experiments 

 • Calculations for complex systems 
– Theory provides key role along with experiments  
– Understanding 
– Predictions  
– Direct simulation of atomic scale quantum phenomena 

• Examples 
– Surfaces, interfaces, defects, …. 
– Thermodynamic phase transitions, Liquids, Melting, … 
– Nanostructures – in real environments, … 
– Large complex molecules – in solution, …. 

1900 1920 1940 1960 1980 2000 2020 

Examples of Modern Calculations 



• For a molecule with a significant dipole, a molecular calculation with a supercell 
DFT code is constructed as a three-dimensional molecular crystal and the 
molecule can interact with its artificial periodic images. Note that the supercell 
error in the computed energy can amount to tenths of an eV. 

• Supercell calculations for systems with a net charge can be done by neutralizing 
the net charge in the supercell with a compensating flat background density. 

• Simulating two-dimensional surfaces can be constructed as a periodic array of 
thin slabs separated by vacuum. If the slab is polar, the electric field from the 
periodic array of dipole layers affects the surface. Only relatively simple 
correction schemes are available to fix the problem. 

• Slabs in surface calculations are made as thin as possible to minimize the 
computational cost. The thickness needs to be checked for convergence. 

Supercell Size 

When attempting to simulate properties of systems of reduced 
dimensionality, special attention must be paid to the manner in 
which the boundary conditions are applied. 



A Case Study of Modern DFT Calculations 

• AlAs Lattice and Electronic Structure 



 Improving accuracy 
 Better approximation schemes for the exchange-

correlation functional 
 Multiphysics applications 
 Magnetoelectronics (spintronics)  
 Multiferroics (ferromagnetism, ferroelectricity, 

ferroelasticity and ferrotoroidicity) 
 Improving the performance to meet multiscale 

challenges 
 Order-N methods 



 Fundamental Issues of locality in quantum 
mechanics 

 Paradigm for view of electronic properties 
 Practical Algorithms  
 Results 

Simulations of Large Systems: Linear Scaling 
Order-N Method 



 V. Heine  (Sol. St. Phys. Vol. 35, 1980) 
 “Throwing out k-space” 
 Based on ideas of Friedel (1954) , . . . 

 Many properties of electrons in one region are independent 
of distant regions 
 

 Walter Kohn  
“Nearsightness” 

Locality in Quantum Mechanics 



 Divide System into (Overlapping) Spatial Regions.   
Solve each region in terms only of its neighbors. 
(Terminate regions suitably) 

 Use standard methods  
for each region 

 Sum charge densities  
to get total density,  
Coulomb terms  

Divide and Conquer Method 
 W. Yang, 1991 
Related approaches in other methods 

General idea used to create Order-N methods 



 How to go beyond empirical potentials? 
 Solve the entire system quantum mechanically  

– not feasible and not accurate enough now  
– need empirical adjustments for sensitive processes 

 Solve electronic problem only in critical regions (e.g. catalytic sites)  
– probably still with some adjustments  
– couple to empirical methods for large scale features  

 

Multiscale! 
Space 
Time 

Biological Systems, . . . 



 Exciting arenas for theoretical predictions of materials design 
      Realistic simulations under real condition 
      Molecules/clusters in solvents, . . . 
      Catalysis in real situations 
      Nanoscience and Nanotechnology 
      Biological problems 
 
 Beware -- understand what you are doing! 
      Limitations of present DFT functionals 
      Use codes properly and carefully 
 
 Critical issues: to be able to describe relevant Time and 
Length Scales  

Looking Forward 



 Density functional theory is by far the most widely 
applied“ab initio” method used in for “real 
materials” in physics, chemistry, materials 
science 

 Approximate forms have proved to be very 
successful 

 BUT there are failures 
 No one knows a feasible approximation valid for  

all problems – especially for cases with strong 
electron-electron correlations 

Concluding Remarks 
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