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Course Objectives

Intelligently apply computational methods to the design of
materials

Effectively design materials to yield desirable functionality

Interpret experimental data based on theoretical modeling
and simulations

Design experiments to yield deeper insights for materials
discovery

Core Issue: How to implement a meaningful simulation
for the design of materials?



Materials properties charts: Scalings in Mechanical

Strength vs. Density
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Objectives of multiscale modeling of materials

» Understand the molecular level origins of materials behavior
* Predict the behavior of materials from first principles

, Electrons== Atoms == Mesoparticles == Elements
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Ultimate: design new materials with improved performance



Strengths and limitations of different materials modeling
approaches \

Quantum Mechanical modeling
» Solve Schrodinger eqn. (SE) H®=FE® for electrons.
» General for different materials, accurate (chemical reaction, bond
breaking, etc)
 \Very expensive; N<1000

d’r, dV. (r
* Solve Newton egn. m, —- = f, = —— fof( )

i

* V. (r) unknown; constructed by fitting to ‘data in analytical form
o Faster than QM cal.; N ~ 10° to 10’

* Solve continuous displacement filed u(x) for given Hooke’ s Law

1 du,

0, = Uy, €, by minimizing the elastic energy £ = _f 0,z dv; e, =

: . . : : O .
. No microscopic physics contained in the model, nd discrete lattice "
 \ery cheap; microns to meters for real engineering structures!




Contents of this Course

How computational methods are applied to modern design
of materials for desired functionality

One overview on methodology and five design categories to
be covered:

0. Principles of computational materials design
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Computational design of materials for desired mechanical

esign of semiconductor systems
esign of metal systems

esign of catalytic materials

esign of energy-related Materials



Contents of this Course

How computational methods are applied to the design of
materials to yield the desired functionality?

Methods to be Covered:

= first-principles approaches

= molecular dynamics (MD) simulations
= Kkinetic Monte Carlo (kMC) simulations
= continuum elasticity theory

Extensive Examples:

= problems in energetic and kinetic parameters of complex
structures

= materials for energy conversion, storage, and
environmental protection

= those related to mechanical strength of materials



0: Principles of computational materials design

= Kohn-Sham (KS) density functional theory (DFT)

= Car-Parrinelo ab initio molecular dynamics

= Nudged elastic band (NEB) method for atomistic rate
processes

= Kinetic Monte Carlo simulations

= Multi-scale materials modeling: sequential approaches

= Multi-scale materials modeling: concurrent approaches



Computational Approach to Materials Science Invoking

Interparticle Potentials

Empirical
Model potentials for inter-atomic interactions
Low accuracy and relatively poor predictability
Semi-empirical
Input parameters in the model potentials determined quantum
mechanically

Better accuracy and reasonable predictability
Quantum mechanical (first-principles)

No models (at least on a formal level)
Highest accuracy and predictability

Interactomic Potentials

I—II—I

Empirical Semi-Empirical Ab Initio/DFT

Neglect Core Electrons
Approximate/parameterize HF Integrals

Neglect Electrons Full Accounting of Electrons




Materials Discovery by Quantum Design

Philosophy:
Using quantum mechanical principles, devise kinetic
pathways to form novel materials that possess

Intriguing properties of technological significance.

“Uncovering nature’s hidden rules of making”



Quantum Mechanics == Technology Challenges

for the 21st Centur

» Challenges for science
— Create new materials and systems by design

— Scientific progress built upon discoveries of new materials —
Fullerenes, nanotubes, and graphene (single layer 2D crystals,
10/2004 in Science Magazine).

— Build upon discoveries of self-assembled systems

— Make progress in understanding biological systems starting
from the fundamental equations of quantum mechanics

o Qutstanding issues for computation
— Bridging the time and length scales
— Length — from atoms to nano to macroscopic size
— Time — picoseconds to milliseconds
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Density Functional Theory (DFT)

 P. Hohenberg and W. Kohn, "Inhomogeneous electron
gas," Phys. Rev., 136, B 864 (1964).

« W. Kohn and L. J. Sham, "Self-consistent equations
Including exchange and correlation effects," Phys. Rev.
140, A 1133 (1965).



An 85-year long way

; = L.deBroglie
Nature 112, 540 (1923).

g

R R « E. Schrodinger — 1925
« Pauli exclusion Principle - 1925
e Fermi statistics - 1926
e Thomas-Fermi approximation — 1927
 First density functional — Dirac — 1928
 Dirac equation — relativistic guantum mechanics - 1928
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Quantum Mechanics == Technology

The Greatest Revolution of the 20th Century

e Bloch theorem — 1928

e First understanding of semiconductors — 1930°s
Wilson - Implications of band theory - Insulators/metals —1931
Wigner- Seitz — Quantitative calculation for Na — 1935

Slater - Bands of Na - 1934 (proposal of APW in 1937)
Bardeen - Fermi surface of a metal - 1935

* Invention of the Transistor — 1940’ s
— Bardeen — student of Wigner
— Shockley — student of Slater

APW: Augmented Plane Waves
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The Basic Methods of Electronic Structure

« Hylleras — Numerically exact solution for H, — 1929
— Numerical methods used today in modern efficient methods
o Slater — Augmented Plane Waves (APW) - 1937
— Not used in practice until 1950’ s, 1960° s — electronic computers
* Herring — Orthogonalized Plane Waves (OPW) — 1940
— First realistic bands of a semiconductor — Ge — Herrman, Callaway (1953)
« Koringa, Kohn, Rostocker (KKR) Multiple Scattering — 1950’ s
— The “most elegant” method - Ziman
« Boys — Gaussian basis functions — 1950’ s
— Widely used, especially in chemistry
 Phillips, Kleinman, Antoncik,— Pseudopotentials — 1950 s
— Hellman, Fermi (1930’ s) — Hamann, Vanderbilt, ... —1980" s
e Andersen — Linearized Muffin Tin Orbitals (LMTO) — 1975
— The full potential “L” methods — LAPW, ....
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Basis of Modern Calculations

Density Functional Theory

Hohenberg-Kohn; Kohn-Sham - 1965

Car-Parrinello Method — 1985

Improved approximations for the density functionals
— Generalized Gradient Approximations (GGA), . ..
Evolution of computer power

Nobel Prize for Chemistry, 1998, Walter Kohn

Widely-used codes —The most obvious distinction is between these codes is to
target molecular systems or those that use periodic boundary conditions (PBCs) to
treat the physics of extended systems.

— ABINIT, VASP, CASTEP, ESPRESSO, CPMD, FHI98md,
SIESTA (Order-N), CRYSTAL, FPLO, WEIN2k, . . .
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Most Cited Papers in APS Journals (till 2003)

o 11 papers published in APS journals since 1893 with > 1000 citations
(citations in APS journals, ~5 times as many references in all science journals)

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003

Publication # cites  Av. age Title Author(s)
PR 140, A1133 (1965) | 3227 | 26.7 Self-Consistent Equations Including Exchange and Correlation Effgets W, Kohn, L. ). Sham
PR 136, B864 (1964) 2460  28.7 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn

PRB 23, 5048 (1981) 2079 14.4 Self-Interaction Correction to Density-Functional Approximations for

Many-Electron Systems J. P. Perdew, A. Zunger

PRL 45, 566 (1980) 1781 15.4 Ground State of the Electron Gas by a Stochastic Method D. M. Ceperley, B. J. Alder

PR 108, 1175 (1957) 1364  20.2 Theory of Superconductivity |. Bardeen, L. N. Cooper, ]. R. Schrieffer
PRL 19, 1264 (1967) 1306 15,5 A Model of Leptons 5. Weinberg

PRE 12, 3060 (1975) 1259 18.4 Linear Methods in Band Theory 0. K. Anderson

PR 124, 1866 (1961} 1178  28.0 Effects of Configuration Interaction of Intensities and Phase Shifts . Fano

RMP 57, 287 (1985) 1055 9.2 Disordered Electronic Systems P. A. Lee, T. V. Ramakrishnan

RMP 54,437 (1982) 1045 10.8 Electronic Properties of Two-Dimensional Systems T. Ando, A. B. Fowler, F. Stern

PRB 13,5188 (1976) 1023  20.8 Special Points for Brillouin-Zone Integrations H. J. Monkhorst, J. D. Pack

PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Madern Physics.

From Physics Today, June, 2005



Most Cited Papers in APS Journals till 01/24/2012
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Most Cited Papers in APS Journals till 01/24/2012
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Many-Electron Systems

Electron: ¢  Nucleus: @

Many-electron problem

\. e e
o« T,

o ‘o-
;/O v .
® /o 0

./,

electron-electron interaction
electron-nucleus interaction

= Born-Oppenheimer Approximation

Allows the equation of motion
for electrons and nuclei to be
treated separately
= Quantum mechanical description of
the electronic states

Quantum chemistry (Hartree,
Hartree-Fock, CI)

Quantum Monte-Carlo
Perturbation theory
Density functional theory




The basis of Density Functional Theory (DFT)

( The Fundamental Hamiltonian )

Interacting electrons in an external potential

2 Z 2 2
vi— Z

21, ’ il |I'.,, RI| fe.;éj |I'.;, - rj|

A= - %

2 ZIZJ€2

1
_ vﬂ 4+ - v
/Z ! QEHRI_ R,

e Only one small term: The kinetic energy of the nuclel

e [f we omit this term, the nuclel are a fixed external

_potentia,l a,cting; on the electrons

e The final term is essential for charge neutrality — but
is a classical term that is added to the electronic part



The Hohenberg-Kohn Theorems

e Theorem I: For any system of electrons in an ex-
ternal potential V,,+(r), that potential is determined
uniquely, except for a constant, by the ground state
density n(r). n(f) — V__.(F) + constant
Corollary I: Since the hamiltonian is thus fully deter-
mined, except for a constant shift of the energy, the
full many-body wavefunction and all other properties
of the system are also completely determined!

nO(r) — Vext(r) +C
— H—-> ¥

— All properties based on the wavefunction
and total energy



Proof by Variational Principle

Proof of Theorem I:

‘SUppoae that thele were two different external poten-
tials V! e_rt (r ) and V! E_rt (r) with the same ground state den-
sity n(r). The two external potentials lead to two ditfer-
ent hamiltonians, Y and H'?, which have different
eround state wavefunctions, ') and U'®), which are hy-
pothesized to have the same density n(r). Then:

EO = (O FO[eD) < (v 2>|H ”|W> (6)
which leads to Note : Hy = H, — [V — 17

BO < 2O ¢ [ atr Vi) — 1;% (r) }n(r). (7)
But changing the labels leads to

E® < BO 4 [V @) — V@) nw). ()

which is a contradiction!

EMW < E® 4 f dr3{V (@) —v@ @M in)

EMW > EQ® 4 f dr3{v D @) —v A @) in(r)



The Hohenberg-Kohn Theorems

e Theorem II: A universal functional for the energy
E|n] of the density n(r) can be defined for all electron
systems. The exact ground state energy is the global
minimum for a given V,,¢(r), and the density n(r)
which minimizes this functional is the exact ground
state density.

Corollary II: The functional E'[n| alone is sufficient to
determine the exact eround state eneroy and density.

Excited states of the electrons must be determined
by other means.

A functional E [n(r)] maps a function n(r) to a property E: n(r) — E
Minimizing E[n] for a given V,,,(r) — ny(r) and E

In principle, one can find all other properties, which are functionals
of ny(r).



The basis of Density Fu

nctional Theory (DFT)

e Hohenberg-Kohn (1964)

Vert(r) @ no(r)
U r

vi({r}) = Wo({r})

 All properties of the many-body system are determined by

the ground state density n(r)

« Each property is a functional of the ground state density

ny(r) which is written as f [n,]




The Kohn-Sham Ansatz

o Kohn-Sham (1965) — Replace original many-body problem
with an independent electron problem, which can be solved!

no(r) =3 3 [97(r)],
7 i=1

Ver(®) 2ZE o) no(r) =2 Vig(r)
/) 1 ) I
v({r}) = VYo({r}) Yi=1 n(r) = Yi(r)

e Only the ground state density and energy are required to be the
same as in the original many-body system



The Hohenberg-Kohn Theorems - Continued

Properties of

)& the system &g\

Hard problem to solve “Easy” prbb_\lei‘_,h to solve
N N
Schrodinger view ... DFT view
® ) Ve ®
@ - 0
Formally ®
o< Y equivalent P
@ electron @ Kohn-Sham particle
interaction (non-interacting)

—— external potential / = ---—-- effective potential

The functional is part of
LDA, GGA, the translation of the SE
Meta-GGA, | external potential into the
Hybrids, ... | K5 effective potential.

n(r’) ;

— dr
e =]

..|_

Vefr (r)=v(r)+ J

Instead of solving the complicated real system of interacting electrons
In an external potential v(r), a much simpler equivalent fictitious system of
non-interacting KS particles in an effective potential v () Is solved.



An Explanation of Exc in Many-Electron System

I Depleted region
(exchange hole)
due to Pauli
-exclusion between
electrons with
parallel spin.
—> E£,<0

Depleted fegion (correlation hole) due to the
electrostatic interaction between electrons.— E . <0



Functional Exc[n] In Kohn-Sham Egs.

How to find a functional E, [n] ? It requires
Information on the many-body system of interacting electrons

Climb up the Jacob’s ladder

€ Local Density Approximation (LDA)

» Uses only the electron density n(r) at spatial point r to
determine E,. at that point. Assume the functional is the
same as that of the homogeneous electron gas;

»> E,  has been calculated as a function of density
using quantum Monte Carlo methods (Ceperley & Alder)---
PZ, PW, and VWN

€ Gradient approximations (GGA) ---PBE and PW91

» Adds the gradient of the density |Vn(r)| as an independent

variable.



Functional Exc[n] In Kohn-Sham Egs.

€ Meta-GGA
» Use Laplacians of the density and/or Kinetic energy densities
as additional degrees of freedom.
€ Hyper-GGA
» Adds an exact exchange (EXX) energy per particle
calculated from the SE many-body wavefunctions with the
Hartree—Fock (HF) exchange formula.

€ Generalized random phase approximation
» Use EXX and exact partial correlation



Selecting a functional

There are no guarantees when selecting functionals. Following
are some useful guidelines:

>

It is useful to perform a calculation with at least two different types of
functional in order to get a rough estimate of the accuracy.

Currently available functionals are sometime inadequate for computation of
surface properties and for systems where van der Waals interactions are
Important. It is also well know the inability of LDA and GGA functionals to
reproduce the experimental valence—conduction band gap in semiconductors
and insulators.

Spin polarized calculations are crucial in getting reasonable results for defects
In insulators. But watch out present functionals tend to delocalize spin
densities too much.

Always keep in mind that DFT calculations with presently available
functionals do not always give the correct answer (see CO on Pt(111)).



The Kohn-Sham Equations (KSE)

e Assuming a form for E,[n]
e Minimizing energy (with constraints) — Kohn-Sham Egs.

no(r) =5 Y [wf(v)|?,
T =1

1
Exs = EZ Z |V’(,bf|2-|-/ drvext(r)n(r)+EHartree[n]+EII+E$C[n]-

g =1

0Bks _ (1) Eigenvz_alues_are
Sp7*(r) ’ pproximation
to the energies to
(2) add or subtract

1 electrons
(—EVQ + Vis(r), —el )i (r) =0  (3) _electron bands

Constraint — require
Exclusion principle for

independent particle (7 |95 ) = 01,05 gt-

oF O E e
VI%S(I') — Ve:ct(r) + 5nlziTZ§e -+ 5%(1‘ O')

Vert(r) + Viartree(r) +m4)



What about eigenvalues of KSE?

‘ 2p(7") 5. 27, .
vy [ 220 ey s =+ V() | 4(F) = 24 (F)

—/
SRl

n

= The only quantities that are supposed to be correct in the
Kohn-Sham approach are the density, energy, forces, ....

= These are integrated quantities
Density n (r) = Z, |W;(n)[?
Energy E. =X +F[n]
Force F,=-dE,/dR, where R, = position of nucleus I

= What about the individual W;(r ) and g; ?
In a non-interacting system, &; are the energies to add an non-
Interacting electron.

In the real interacting many-electron system, energies to add
and subtract electrons are well-defined only at the Fermi

energy.



Solving Kohn-Sham Equations

e Structure, types of atoms )
eff

r), crystal structure j

e (Guess for input One-electron Schrodinger Equation
[V + V(M (r) =6y ()

o Solve KSE
V() piF)= Z y,(F)
* New Density and Potential L LDA (or GGA) Potential
Is converged?
No
V) I ) TdT Z ).1) v
» Self-consistent? P - \ “
’ OUtPUt: o(r), crysta] structure | ground state £ [p],etc.
— Total energy, force, -
I - 3 A
stress, ... Zs [ AOPE) - | 12 e P+ E2 )

11‘

— Eigenvalues



Solving Kohn-Sham Equations

What is the computational cost? Can the KSE be
applied to large complex systems?

« Limiting factor — Solving the KSE.
e Solution by diagonalization scales as (Ngjectron)®
e Improved methods ~N?

e Order-N - “Linear Scaling”
Allows calculations for large systems — integration
with classical methods for multiscale analysis



Calculations on Materials: Molecules, Clusters,

Solids, ....

e Basic problem - many electrons in the presence of
the nuclel

» Core states — strongly bound to nucleil — atomic-like

* Valence states — change in the material — determine
the bonding, electronic and optical properties,
magnetism, .....



The Three Basic Methods for Modern Electronic

Structure Calculations

e Plane waves

— The simplicity of Fourier Expansions
— The speed of Fast Fourier Transforms
— Requires smooth pseudopotentials

= Localized orbitals
The intuitive appeal of atomic-like states
Simplest interpretation in tight-binding form
Gaussian basis widely used in chemistry
Numerical orbitals used in SIESTA All methods agree

when done carefully!

e Augmented methods

— “Best of both worlds” — also most demanding
— Requires matching inside and outside functions
— Most general form — (L)APW



Plane Waves

e The most general approach

[blaie)
qIGIenE
o
Yik(r) o< 3 eim(k) x exp(iCk + Gm) 1) (1)
0 Kohn-_Sham S Hypy (K (k) = ei(K)eim(k)  (2)
Equations m’
' 2
Ina CryStaI Hm,m’(k) = h . m,m""‘/eff(Gm_Gfm’)'

(3)
e The problem is the atoms! High Fourier components!



Plane Waves

e (L)APW method

» Augmentation: represent the wave function inside
each sphere in spherical harmonics
— “Best of both worlds”
— But requires matching inside and outside functions
— Most general form — can approach arbitrarily precision



M ETERWAEER

e Pseudopotential Method - replace each potential

©0C
TOOOO =
000G

Pseudopotential @ atom |1

o| 1 |Generate Pseudopotential in atom (spherical) — | 2 | use in solid

» Pseudopotential can be constructed to be weak
— Can be chosen to be smooth
— Solve Kohn-Sham equations in solid directly in Fourier space




Pseudopotentials (PP)

The replacement of the full all-electron (AE) potential with a PP is a
compromise between chemical transferability (faithful reproduction of AE
behavior) and improved computational efficiency (slowest possible spatial
variability). Thus, an appropriate guideline to generate a PP is not how well it
matches experiment, but how well it reproduces the results of identical AE
calculations.

The effectiveness of a given PP needs to be validated in every new chemical
environment (e.g., in a metal or an oxide).

Non-local core correction is needed to get correct spin-polarized states of first
row atoms like oxygen and nitrogen.

Mixing functionals in a calculation is a dangerous practice. An atomic PP
developed within one DFT flavor should not be used in DFT calculations
performed in another flavor of DFT.



Brillouin Zone Sampling
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* Bloch’s theorem transforms a problem with an infinite number of atoms and
electronic states into a finite number of atoms and states in a translationally
Invariant unit cell but with an infinite number of wave-vectors in the Brillouin

zone (B2).

e Thus to calculate a property P, a special-point scheme is employed that uses
the fewest possible k points to give the most accurate approximation to the
Integration over the BZ. The k point sampling can have a profound impact on
computed properties.

* For metals, the convergence behavior of computed properties must be checked,
versus the k sample and occupation broadening method.



Basis Set Sufficiency

The real space formulae for evaluating pressure and stresses contain derivatives
with respect to coordinates V.. Each of these derivatives introduces reciprocal
lattice vectors G, which is directly dependent on the energy cutoff. Thus,
pressure and stress are more sensitive to the plane wave cutoff than the energy.

The error in the pressure is linear in the kinetic energy error (i.e., the kinetic
energy In the atomic wavefunction above the cutoff ). The slope of this linear
dependence does depend on the atomic configuration. So one should always
test some relevant configurations for convergence.

An advantage of LCAO methods is a much smaller basis set than the plane
waves basis. To simulate atoms far removed from equilibrium with LCAO may
require extra variational freedom in the basis set. For unusual chemical or
strained atomic configurations, it is advisable to verify whether basis
augmentation is needed.

Note that standard LCAO basis sets are not designed for weak interactions,.
Special attention must be paid when simulate material systems with interplanar
spacings or in computing work functions at surfaces.



Structural Relaxation

e For a DFT calculation to have predictive value, the study must
be performed systematically.

e A good practice of theoretical investigation should include
structural relaxation. A plausible strategy for finding the lowest
energy geometry Is to explore unrelaxed structures first and to

relax the structure(s) with low(est) energy.



Examples of Modern Calculations

* Properties of crystals — many calculations are now “routine”
— Definitive tests of the theory — comparisons with experiments
 Calculations for complex systems
— Theory provides key role along with experiments
— Understanding
— Predictions
— Direct simulation of atomic scale guantum phenomena
o Examples
— Surfaces, interfaces, defects, ....
— Thermodynamic phase transitions, Liquids, Melting, ...
— Nanostructures — in real environments, ...
— Large complex molecules — in solution, ....
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Supercell Size

For a molecule with a significant dipole, a molecular calculation with a supercell
DFT code is constructed as a three-dimensional molecular crystal and the
molecule can interact with its artificial periodic images. Note that the supercell
error in the computed energy can amount to tenths of an eV.

Supercell calculations for systems with a net charge can be done by neutralizing
the net charge in the supercell with a compensating flat background density.

Simulating two-dimensional surfaces can be constructed as a periodic array of
thin slabs separated by vacuum. If the slab is polar, the electric field from the
periodic array of dipole layers affects the surface. Only relatively simple
correction schemes are available to fix the problem.

Slabs in surface calculations are made as thin as possible to minimize the
computational cost. The thickness needs to be checked for convergence.

When attempting to simulate properties of systems of reduced
dimensionality, special attention must be paid to the manner in
which the boundary conditions are applied.



A Case Study of Modern DFT Calculations

e AlAs Lattice and Electronic Structure



Recent Development

= Improving accuracy

Better approximation schemes for the exchange-
correlation functional
= Multiphysics applications

Magnetoelectronics (spintronics)

Multiferroics (ferromagnetism, ferroelectricity,
ferroelasticity and ferrotoroidicity)
= Improving the performance to meet multiscale
challenges

Order-N methods



Simulations of Large Systems: Linear Scaling

Order-N Method

= Fundamental Issues of locality in qguantum
mechanics

= Paradigm for view of electronic properties

= Practical Algorithms

= Results




Locality in Quantum Mechanics

= V. Heine (Sol. St. Phys. Vol. 35, 1980)
“Throwing out k-space”
Based on ideas of Friedel (1954) , ...
= Many properties of electrons in one region are independent
of distant regions

= Walter Kohn
“Nearsightness”




General 1dea used to create Order-N methods

= Divide System into (Overlapping) Spatial Regions.
Solve each region in terms only of its neighbors.
(Terminate regions suitably)
= Use standard methods
for each region
= Sum charge densities
to get total density,
Coulomb terms

Divide and Conquer Method
W. Yang, 1991
Related approaches in other methods



Biological Systems, . . .

How to go beyond empirical potentials?

Solve the entire system quantum mechanically

— not feasible and not accurate enough now

— need empirical adjustments for sensitive processes

Solve electronic problem only in critical regions (e.g. catalytic sites)
— probably still with some adjustments

— couple to empirical methods for large scale features

Multiscale!
Space
Time




_ooking Forward

= EXxciting arenas for theoretical predictions of materials design
Realistic simulations under real condition
Molecules/clusters in solvents, . . .
Catalysis in real situations
Nanoscience and Nanotechnology
Biological problems

= Beware -- understand what you are doing!
Limitations of present DFT functionals
Use codes properly and carefully

= Critical issues: to be able to describe relevant Time and
Length Scales



Concluding Remarks

Density functional theory Is by far the most widely
applied “ab initio” method used in for “real
materials” in physics, chemistry, materials
science

Approximate forms have proved to be very
successful

BUT there are failures

No one knows a feasible approximation valid for
all problems — especially for cases with strong
electron-electron correlations
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